DVP, 15 May 2017, sPHENIX JS Meeting

Thoughts on implementing ATLASstyle background subtraction

FIG. 1: Schematic illustration of the jet background subtraction method.

Some questions

- $dE_T/d\eta$ and v_2 estimation in how many layers?
 - → 1 layer: create 0.1x0.1-sized grid based on HCal geometry, partition energy in EMCal towers based on which HCal towers they overlap with
 - → 2: deal with EMCal and IHCal+OHCal separately, makes sense since they have different geometries / different background levels
 - → 3: each layer separately: seems like over-complication, but this is what's currently done in ATLAS...
- How much of existing jet reco modules / software to use?
 - example #1: create parallel copies of CEMC / HCALIN / HCALOUT tower containers, at different levels of subtraction, feed into JetReco module as normal
 - → example #2: create purpose-built, lightweight containers and jet reco modules

Possible software design

- Containers which live on the node tree:
 - ⇒ BackgroundContainer: stores background d E_T /d η vs. η , and global v_2 values
 - ⇒ FullCaloTowerContainer: stores $d^2E_T/d\eta d\phi$ in calo towers at various levels of subtraction (or is this too similar to existing tower containers?)
 - → <u>HIJetContainer</u>: stores HI jet (and constituent) information (or is this too similar to existing jet container?)
- Distinct Fun4All Modules:
 - → ConstructFullCaloTowers: run only one, initiates the "raw" FullCaloTowerContainer from existing CEMC / HCALIN / HCALOUT tower information
 - → RunHIJetReco: given a <u>FullCaloTowerContainer</u>, puts a set of reconstructed jets in an <u>HIJetContainer</u> on the node tree (potentially of various R sizes)
 - → DetermineBackground: takes the raw FullCaloTowerContainer and a set of jets to be used for the seed exclusion (& seed definition), estimates the background and puts the resulting BackgroundContainer on the node tree
 - → GenerateFullCaloTowers: given an existing FullCaloTowerContainer and the desired BackgroundContainer, puts a subtracted set of towers in a FullCaloTowerContainer on the node tree

Possible HI jet reco flow

- 1. ConstructFullCaloTowers() → creates a FullCaloTowerContainer raw_calo
- 2. RunHIJetReco(FullCaloTowerContainer raw_calo, R=0.2 only) → creates a HIJetContainer first_jets
- 3. DetermineBackground(FullCaloTowerContainer raw_calo, HIJetContainer first_jets) → using R=0.2 D>3 jets as seeds, creates a background object BackgroundContainer first_bkg
- GenerateFullCaloTowers(FullCaloTowerContainer raw_calo, BackgroundContainer first_bkg) → creates an initial subtracted set of towers FullCaloTowerContainer second_calo
- 5. RunHIJetReco(FullCaloTowerContainer **second_calo** , *R*=0.2 only) → creates a HIJetContainer **second_jets**
- DetermineBackground(FullCaloTowerContainer raw_calo, HIJetContainer second_jets) → using R=0.2 pT > 20 GeV jets from 2nd pass as seeds, creates a background object BackgroundContainer second_bkg
 - → note: this goes back to the raw (initial) calo
- GenerateFullCaloTowers(FullCaloTowerContainer raw_calo, BackgroundContainer second_bkg) → creates the final set of subtracted towers FullCaloTowerContainer final_calo
- 8. RunHIJetReco(FullCaloTowerContainer final_calo, R=0.2,0.3,0.4,0.5) → creates a HIJetContainer final_jets